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We study the electronic band structure and optical response of a hybrid model, a α−T3 model fea-
turing a

√
3×

√
3 Kekulé pattern modulation. Such a hybrid system may result from the depositing

of adatoms in a hexagonal lattice, where the two sublattices are displaced in the perpendicular direc-
tion, like in germanene and silicene. We derive analytical expressions for the energy dispersion and
the eigenfunctions using a tight-binding approximation of nearest-neighbor hopping electrons. The
energy spectrum consists of a double-cone structure with Dirac points at zero momentum caused by
Brillouin zone folding and a doubly degenerate flat band resulting from destructive quantum inter-
ference effects. Furthermore, we study the spectrum of intraband and interband transitions through
the joint density of states, the optical conductivity, and the Drude spectral weight. We find new
conductivity terms resulting from the opening of intervalley channels that are absent in the α− T3

model and manifest themselves as van Hove singularities in the optical response. In particular, we
identify an absorption window related to intervalley transport, which serves as a viable signature
for detecting Kekulé periodicity in two-dimensional materials.

I. INTRODUCTION

In recent years, two-dimensional (2D) materials ex-
hibiting flat bands have garnered significant attention
due to their unique electronic and transport properties,
making them ideal platforms for exploring novel physical
phenomena [1–11]. The observation of correlated insula-
tor states and signatures of unconventional superconduc-
tivity in twisted bilayer graphene [2] has further fueled
the interest in systems hosting flat bands close to the
Fermi level [12, 13].

Line graphs [4, 14–16], such as the kagome and py-
rochlore lattices, along with bipartite lattices like the
Lieb and dice lattices [4, 17], naturally host flat bands in
their energy spectrum thanks to destructive interference
between electron wavefunctions. The α − T3 model [18–
21] is a simple example of flat-band system which con-
tinuously evolves between the graphene and dice lattice
by modulation of a hopping parameter. Its crystal struc-
ture consists of a honeycomb lattice (rim atom), with
an additional site at the center of each hexagon (a hub
atom) that couples to neighboring atoms with only one
of the sublattices, hosting a flat band and Dirac cones
close to the Fermi level. Numerous studies are dedicated
to unraveling the mechanisms behind the emergence of
flat bands in Dirac systems [10, 22, 23] and how they give
rise to a variety of quantum phases [24, 25]. The optical
response of flat bands has also been studied [26–29], but
since the group velocity in these bands vanishes, identi-
fying clear optical signatures in the low-frequency range
seems challenging.

∗ ramoncarrillo@uabc.edu.mx

On the other hand, spatial bond modulation can in-
duce exotic effects in the electronic properties of two-
dimensional materials [8, 30–33]. One of the most in-
teresting examples of spatial modulation is the Kekulé
distortion in the graphene honeycomb lattice [34–37],
where the lattice acquires a bond density wave with su-
perlattice unit cell

√
3×

√
3 larger than the original unit

cell. As a result, Brillouin zone folding brings the K,K ′

points to the center of the Brillouin zone (Γ point). Ex-
periments suggest two types of Kekulé modulations in
graphene with distinct low-energy spectrum [37, 38]: the
so-called Kek-Y phase with two Dirac cones with different
velocities, and the Kek-O phase with a doubly degener-
ate massive Dirac band. Several mechanisms have been
proposed to generate phases with different Kekulé dis-
tortions [39–53], indicating its ubiquitousness in hexag-
onal lattices [39]. Electrical and optical signatures offer
a promising avenue for studying and understanding the
mechanism behind the Kekulé phase [54–61].

From a topological perspective, Kekulé-distorted
graphene was first proposed as a novel platform host-
ing fractionally charged topological excitations [31]. Me-
chanical strain applied to graphene-based heterostruc-
tures with Kekulé patterning also gives rise to intrigu-
ing topological effects [62]. Moreover, Kekulé distortion
is one of the suggested mechanisms behind the super-
conducting and correlated insulating states behavior in
magic-angle twisted bilayer graphene [63–68], further in-
creasing the interest in the study of Kekulé-patterned
superlattices.

In this work, we propose a hybrid model based on a
honeycomb lattice with an atom located at the center
of each hexagon, appearing only with Kekulé periodic-
ity. We name this system as “Kekulé-modulated α − T3
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FIG. 1. (a) Lattice structure of Kekulé-modulated α−T3 model. Atoms on sublattices A and B are depicted as gray and blue
circles, respectively. The hub atoms in red appear with Kekulé periodicity and only connect with the B sublattice. (b) The
basis vectors of the honeycomb lattice are a1 and a2. The vectors δ1, δ2, and δ3 connect each A or B atom to its nearest
neighbors. The gray parallelogram represents the unit cell of the superlattice. (c) Reciprocal space with vectors K±. The
original (honeycomb lattice) Brillouin zone is represented as a black dashed hexagon. The K±

D valleys (at the red Dirac points)
are coupled by the wave vector G = K+ −K− and folded onto the center of the superlattice Brillouin zone (blue point).

model” (Kek-α), which provides a robust platform for
studying valley and flat-band physics. The feasibility of
constructing such a model has been discussed in the lit-
erature [3, 34, 39, 69–71]. For instance, a hexagonal lat-
tice where its sublattices are displaced along the z-plane,
similar to silicene or related systems [72], with atoms de-
posited with Kekulé periodicity, could be well described
by our model. Given the increasing interest in space-
modulated and flat-band materials, we aim to anticipate
potential future developments in these systems.

This paper is organized as follows. In Sec. II we present
the tight-binding model and in Sec. III we derive a Dirac-
like Hamiltonian and its energy dispersion. In Sec. IV
we study the optical transitions. We first study the joint
density of states to identify critical frequencies, which
will determine the prominent spectral features of the op-
tical response (Sec. IVA). The optical conductivity, due
to intra and interband transitions, is calculated within
the Kubo formalism in Sec. IVB. Finally, we present our
conclusions and remarks in Sec. V.

II. TIGHT-BINDING MODEL

We consider a honeycomb lattice (like graphene, ger-
manene, or silicene) with adatoms on its surface disposed

with a
√
3 ×

√
3 Kekulé periodicity. We call this super-

lattice with seven atoms per unit cell, Kekulé-modulated
α − T3 model. The adatoms are located on top of the
center of the hexagon (hub atoms), forming a third tri-
angular sublattice C with a larger lattice parameter that
only couples with sublattice B, as shown in Fig. 1(a).

The corresponding tight-binding Hamiltonian is:

H = −t
∑
r

3∑
j=1

b†rar−δj
−
∑
r′

3∑
j=1

t′c†r′br′−δj
+H.c., (1)

where the first term describes the honeycomb lattice,
with t the hopping energy between nearest neighbor sites
belonging to sublattices A and B, connected by the vec-
tors δ1 = a

2 (
√
3,−1), δ2 = −a

2 (
√
3, 1), δ3 = a(0, 1). Here

a is the atomic distance. Thus, the honeycomb lattice
vectors are a1 = δ3 − δ1 and a2 = δ3 − δ2, such that the
rim atoms have positions r = na1 +ma2 (n,m ∈ Z) in
sublattice B and r + δ3 in sublattice A (see Fig. 1(b)).
The second term describes the coupling between hub
atoms at r′ = n(2a1−a2)+m(2a2−a1) and nearest neigh-
bor atoms in sublattice B, with t′ = αt the correspond-
ing hopping energy. The parameter α varies continuously
between 0 and 1, interpolating between the honeycomb
(α = 0) and a “partial” dice lattice (α = 1).

In order to describe the superlattice (Kek-α) with the
hexagonal Brillouin zone, we consider additional sites
added in sublattice C but with zero amplitude hoppings,
in such a way that we can sum over all the cells r′ = r+δ3
replacing t′ → tr,j , with

tr,j = αt{1 + 2Re[eiG·(r+δj)]}, (2)

where the Kekulé wave vector is the “distance” between
valleys, defined as G = K+ − K− (see Fig. 1(b)). The
corresponding Hamiltonian in momentum space is given
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FIG. 2. Energy band structure of the Kek-α model obtained
by a direct diagonalization of the tight-binding Hamiltonian
defined by the lattice shown in Fig. 1(b). We consider t =
2.7 eV and α = 1. The spectrum displays dispersive bands
plus a flat band at zero energy originating from the bonded
hub atoms.

by

H =−
∑
k

a†kf(k)bk − α
∑
k

[
b†kf(k)ck+

+ b†k+Gf(k+G)ck + b†k−Gf(k−G)ck

]
+H.c. ,

(3)

where we have defined,

f(k) = t

3∑
j=1

eik·δj . (4)

with the momentum k varying in the original (honey-
comb lattice) Brillouin zone. In order to restrict k to
the superlattice Brillouin zone, we group the annihilation
operators at k and k ± G in the column vector Ψk =
(ak, ak−G, ak+G, bk, bk−G, bk+G, ck, ck−G, ck+G)T, and
write the Hamiltonian in a 9× 9 matrix form:

H = −Ψ†
kH(k)Ψk, (5)

where

H(k) =

 0 F(k) 0
F†(k) 0 αE(k)

0 αE†(k) 0

 , (6)

and

F(k) =

f0 0 0
0 f−1 0
0 0 f1

 , E(k) =

 f0 f0 f0
f−1 f−1 f−1

f1 f1 f1

 ,

(7)
with fn(k + nG), and we have used the relation f(k ±
2G) = f(k∓G) [37].

In Fig. 2, we show the energy dispersion of Kek-
α superlattice. The Kekulé periodicity brings the val-
leys into the Γ point, as observed in Kekulé-distorted
graphene [37], with the addition of a flat band due to the
presence of hub sites. In the following section, we will
derive an effective Hamiltonian for this hybrid system in
the low energy limit.

III. LOW ENERGY HAMILTONIAN

An effective Hamiltonian for low energies can be ob-
tained considering α ≪ 1 and by noticing that the rows
and columns of the matrices F and E associated with
modes ak, bk, and ck (illustrated in blue and gray in
Fig. 2) lead to high energy bands, thus negligible in the
low energy limit. Consequently, in this limit the spec-
trum is primarily determined by six modes, denoted as
uk = (ak−G, ak+G, bk−G, bk+G, ck−G, ck+G). Projecting
onto this subspace results in the reduction of the nine-
band Hamiltonian to an effective six-band Hamiltonian

Heff = u†k

 0 g(k) 0
g†(k) 0 αh(k)
0 αh†(k) 0

uk, (8)

where

g(k) =

(
f−1 0
0 f1

)
, h(k) =

(
f−1 f−1

f1 f1

)
. (9)

We identify the K valley with +G and the K ′ valley
with −G. The k-dependence of f±1 may be linearized
near k = 0, leading to f±1(kx, ky) = ℏvF (∓kx + iky),
where vF = 3at/2ℏ is the Fermi velocity. Finally, we can
write a Dirac-like equation for the Kek-α model as

H
(
ΨK

ΨK′

)
= ε

(
ΨK

ΨK′

)
, H =

(
ℏvFk · S Q
Q† ℏvFk · S∗

)
,

(10)

ΨK =

 ψA,K

−ψB,K

ψC,K

 , ΨK′ =

ψA,K′

ψB,K′

ψC,K′

 , (11)

Q = αℏvF

0 0 0
0 0 keiθk

0 keiθk 0

 , (12)
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FIG. 3. (a) Brillouin zone of the α − T3 model in recipro-
cal space is shown as a gray hexagon. The two inequivalent
valleys are situated in the corners of the hexagon. (b) Bril-
louin zone folding due to the Kekulé periodicity. (c) Energy
dispersion relation of Kek-α around the Γ in the folded Bril-
louin zone. The label Z designates the flat band with “zero”
velocity, S denotes the “slow” cone with velocity vF , and F
signifies the “fast” cone with velocity ∆αvF .

where k = |k|, θk = tan−1(kx/ky), S = (Sx, Sy). The
pseudospin operators Sx and Sy are defined as

Sx =

0 1 0
1 0 α
0 α 0

 , Sy =

 0 −i 0
i 0 −αi
0 αi 0

 . (13)

Note that when α = 0, the set {Sx, Sy} corresponds to
an effective spin-1/2 algebra. In the case where α = 1, it
forms a spin-1 algebra. Therefore, similar to the α − T3
model, this can be interpreted as a smooth interpolation
between S = 1/2 and S = 1 structures.
The low-energy band structure of Kek-α exhibits a dis-

tinctive double cone structure, referred to as “fast” (F±)
and “slow” (S±) cones, along with a doubly-degenerate
flat band denoted as “zero” (Z). The energy dispersion
relation is given by

εξη(k) = ηℏvF (∆α)
ξk (14)

where ∆α =
√
4α2 + 1, η is the index band, η = 1 for

the conduction band, η = −1 for the valence band, and
η = 0 for the flat band. The index ξ = {0, 1} labels

the two degenerate flat bands (Zξ) and the two cones,
defining two velocities: the ‘fast velocity’ vF∆α (ξ = 1)
and the ‘slow velocity’ vF (ξ = 0), associated to the fast
cones F± and slow cones S±, respectively.

In the α − T3 model, rescaling the energy renders the
spectrum independent of α [20, 26]. However, in our case,

εF

S+F+

S− F−

F− → F+

S− → F+

Z→ F+

Z→ S+

S− → S+ F− → S+

S+ → F+

FIG. 4. Schematic representation of optical interband transi-
tions (arrows) in the double cone structure (blue) of the Kek-α
model. They are categorized as intervalley (purple), intraval-
ley (red), and flat-valley (green) transitions. Shaded regions
represent filled electron states up to the Fermi energy εF > 0
(gray dashed line). The inset shows the available conduction-
to-conduction intervalley band transitions opened below εF
by the folding of the Brillouin zone.

such rescaling is not possible, and the spectrum remains
α-dependent because the Kekulé term couples with one
sublattice only. Thus, when the two valleys fold onto the
Γ point (see Fig. 3(b)) one of the cones shows a strong
dependence on α and the other remains independent.
The eigenfunctions ψξ

η are given by

ψ0
0(k) =

1√
2


0
0
−1
0
0
1

 , ψ1
0(k) =

1√
8α2 + 2


2αe−i2θk

0
−1

2αei2θk

0
−1

 ,

for the flat bands, and

ψ0
±(k) =

1

2


±e−i2θk

−e−iθk

0
∓ei2θk
eiθk

0

 , ψ1
±(k) =

1

2∆α


e−i2θk

±∆αe
−iθk

2α
ei2θk

±∆αe
iθk

2α

 ,

for the slow and fast cone, respectively. Two distinc-
tive aspects of the present model are reflected in these
eigenstates. First, the states ψ0

0 and ψ1
0 are degenerate.
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FIG. 5. Joint density of states for (a) intervalley, (b) intravalley and flat-valley transitions. The inset in (a) shows the
contribution of intervalley transitions between bands with the same index η (see inset in Fig. 4), which occur in an energy
window bounded by critical energies labeled as ℏωi and ℏωf (see (19)). The results are normalized to the JDOS between the
two bands of a Dirac point at ℏω = 2|εF |, J0 = (gs/8π)(2|εF |/ℏ2v2F ). We take εF = 0.3 eV and α = 0.4.

This is due to the Brillouin zone folding induced by the
Kekulé periodicity, which merges the valley states asso-
ciated with the flat band. Second, only the fast states
ψ1
± depend on the coupling parameter α, while the slow

states ψ0
± remain identical to those of pristine graphene.

This introduces an asymmetry between the fast and slow
states of the nested cones which is absent in the pure
Kek-Y model, where both cones depend on the Kekulé
coupling.

IV. OPTICAL TRANSITIONS

A. Joint density of states

As a previous step to the calculation of the optical
conductivity, we first explore the spectrum of interband
transitions through the joint density of states (JDOS),
which for transitions (ξ′, η′) → (ξ, η), from the ξ′, η′ band
to the ξ, η at energy ℏω reads as

J ξ,ξ′

η,η′ (ω) = gs

∫ ′ d2k

(2π)2
δ(εξη(k)− εξ

′

η′(k)− ℏω) , (15)

where gs = 2 is the spin degeneracy. The prime indi-
cates an integration domain restricted to that region of

k-space for which εξ
′

η′(k) < εF < εξη(k) (Pauli blocking),

where εF is the Fermi energy. Given that εξη(k) ∝ k (see
Eq. (14)), this inequality defines the radii of the wave vec-
tors available for the allowed transition (ξ′, η′) → (ξ, η) at

fixed photon energy, η′ℏvF (∆α)
ξ′k < εF < ηℏvF (∆α)

ξk.
According to the delta function, with ω > 0, an ad-
ditional restriction is imposed by energy conservation

εξη(k) − εξ
′

η′(k) = ℏω, which defines a circle with radius

k = ω/(ηvF (∆α)
ξ − η′vF (∆α)

ξ′). The combination of
these conditions allows to find the critical energies for

the interband transitions. It can be anticipated that the
JDOS will display the usual linear-in-ω dependence of
graphene-like systems.
Three sets of vertical transitions are distinguished in

the present model:
(1) Intravalley transitions (ξ, η′ = −) → (ξ, η = +),

which we denote as F− → F+ (ξ = 1) and S− → S+

(ξ = 0). They are depicted with red arrows in Fig. 4 for
εF > 0.
The JDOS of these transitions is

J ξ,ξ
+,−(ω) =

gs
8π

ℏω
(ℏvF )2

1

(∆α)2ξ
, ℏω > 2|εF | . (16)

Note that for the transition between slow cones (ξ = 0),
S− → S+ the result is the same as for a single valley

of pristine graphene. Also, when α → 0, J 1,1
+,−(ω) =

J 0,0
+,−(ω) and the result for graphene is recovered.

(2) Intervalley transitions (ξ, η′) → (ξ̄, η = +) [with
ξ̄ = 1 − ξ] for εF > 0 (purple arrows in Fig. 4), which
we refer to as {F− → S+, S− → F+, S+ → F+}, or
transitions (ξ′, η′ = −) → (ξ̄′, η) for εF < 0, collected
in the set {S− → F+, F− → S+, F− → S−}, both sets
are ordered in a decreasing energy onset sequence. The
downward transitions F+ → S+ (εF > 0) and S− → F−
(εF < 0), are excluded from the corresponding set. The
transition S+ → F+ is shown in the inset of Fig. 4.
The JDOS for the transitions with η′ ̸= η reads as

J ξ,ξ̄
+,−(ω) =

gs
2π

ℏω
(ℏvF )2

1

(∆α + 1)2
, ℏω >

(
∆α + 1

(∆α)ξ

)
|εF | ,
(17)

while for transitions with η′ = η,

J 1,0
+,+(ω) =

gs
2π

ℏω
(ℏvF )2

1

(∆α − 1)2
, (18)
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FIG. 6. (a) Real and imaginary parts of the optical conductivity σ(ω) for the Kek-α model. The inset shows the absorption
window due to Re{σinter

α (ω)} (Eq. (32)) and the corresponding singularities in Im{σinter
α (ω)}. (b) The real part of σ(ω) for

α = 0 (graphene) and α = 0.2 (Kek-α). The modulated hub atom increases and splits the interband conductivity into three
steps, and introduces and additional box-shaped energy window for optical absorption well below the Fermi energy, due to
conduction-to-conduction intervalley transitions. The diagram on the right shows the allowed transitions contributing to the
conductivity. We take εF = 0.25 eV.

with (
∆α − 1

∆α

)
|εF | < ℏω < (∆α − 1)|εF | . (19)

The appearance of this window below |εF | is a clear sig-
nature of the present hybrid model; as α→ 0, it leads to
the formation of a singularity, an effect known as band
nesting [73, 74]. Later, we will see how this impacts the
conductivity and serves as a distinctive feature of Kekulé
periodicity.

(3) Flat-valley transitions (ξ′, η′ = 0) → (ξ, η = +)
(εF > 0) or (ξ′, η′ = −) → (ξ, η = 0) (εF < 0), denoted

as {Zξ′ → F+, Z
ξ′ → S+} (green arrows in Fig. 4) or

{F− → Zξ, S− → Zξ}, respectively. For the former set,

Eq. (15) with εξ
′

η′ = 0, gives

J ξ
+,0(ω) =

gs
2π

ℏω
(ℏvF )2

1

(∆α)2ξ
, ℏω > |εF | . (20)

For the latter set, taking εξη = 0 in (15), J ξ′

0,−(ω) =

J ξ′

+,0(ω).
Figure 5 displays the JDOS for the complete set of

interband transitions of the present model. The corre-
sponding onsets in Eqs. (16)-(20) have been labeled ac-
cording to the definition

ℏωξ,ξ′

η,η′ = (η − η′(∆α)
ξ′−ξ)|εF | . (21)

Thus, ℏωg ≡ ℏω1,1
+,− = ℏω0,0

+,− = 2|εF | corresponds to

the onset for the intravalley transitions, while ℏω0,1
+,− =

(∆α + 1)|εF |, ℏω1,0
+,− = (∆α + 1)|εF |/∆α (see (17)),

and ℏω1,0
+,+ = (∆α − 1)|εF |/∆α ≡ ℏωi, ∆αℏω1,0

+,+ =
(∆α − 1)|εF | ≡ ℏωf (see (19)), to the intervalley transi-
tions. The corresponding energy onset for the flat-valley

transitions are labeled as ℏω0 ≡ ℏωξ,ξ′

+,0 = ℏωξ′,ξ′

0,− = |εF |.

It can be seen how for transitions sharing the on-
set, the α-dependent slope provides a way to identify
its nature. It is worthwhile to note also that for a
decreasing magnitude of the parameter α, the number
of transitions between cones with the same band in-
dex, S+ → F+ or F− → S−, notably increase because
J +,−
+,+ (ω) ∝ (∆α − 1)−2, although the frequency region

(19) narrows.

B. Optical conductivity

The optical conductivity tensor of the system reduces
to a scalar response function, with real and imaginary
parts

Re{σ(ω)} = Dδ(ω) +Re{σinter(ω)} , (22)

Im{σ(ω)} = Im{σintra(ω)}+ Im{σinter(ω)} , (23)

where the intraband and interband contributions are ob-
tained from the current-current Kubo formula as

σintra(ω) = igs
σ0

4πℏω
∑
ξ,η

∫
d2k δ

(
εξη − εF

)(∂εξη
∂kx

)2

,

(24)

Re{σinter(ω)} = gsσ0
ℏω
4

∑
ξ,ξ′,η,η′

∫ ′
d2k V ξ,ξ′

η,η′ (k) (25)

× δ
(
εξη(k)− εξ

′

η′(k)− ℏω
)
,
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Im{σinter(ω)} = gsσ0
ℏω
2π

∑
ξ,ξ′,η,η′

P
∫ ′
d2k V ξ,ξ′

η,η′ (k) (26)

×
εξη(k)− εξ

′

η′(k)

(ℏω)2 −
(
εξη(k)− εξ

′
η′(k)

)2 ,
assuming zero temperature. Here, σ0 = 2e2/h and P
denotes Principal Value integral. The function V ξ,ξ′

η,η′ (k)
arises from the product of matrix elements of the veloc-
ity operator or in terms of the interband Berry connec-

tion as V ξ,ξ′

η,η′ (k) = Aξ,ξ′

η,η′(k)Aξ′,ξ
η′,η(k) where Aξ,ξ′

η,η′(k) =

i ⟨ψξ
η(k)|∂ki

ψξ′

η′(k)⟩ is the ki-component, with i = {x, y},
of the interband Berry connection. We choose i = x
for concreteness given the isotropy of the model. The
prime in the integrals demands the same restriction as in
Eq. (15). We have included in Eq. (22) the Drude weight
D = π limω→0[ωIm{σintra(ω)}].
The elements V ξ,ξ′

η,η′ (k) are given by:

V ξ,ξ′

η,η′ (k) =
Vξ,ξ′

η,η′

[εξη(k)− εξ
′

η′(k)]2
, (27)

where we have defined the dimensionless coefficients
Vξ,ξ′

η,η′ = ⟨ψξ
η| ∂kxH |ψξ′

η′⟩ ⟨ψξ′

η′ | ∂kxH |ψξ
η⟩. For allowed in-

terband transitions, we have [ηη′(4α2 − 1) + ∆α]
2/4∆2

α

for intervalley transitions, 4α2/(2α2 + 1) for the transi-
tion Z1 → S+ (or S− → Z1) and zero otherwise.

Intravalley transitions (S− → S+ and F− → F+) in
the Kek-Y graphene model were previously shown to be
forbidden using Fermi’s golden rule [54]. This can be
attributed to the fact that the S cone is entirely chiral,
while the F cone is entirely antichiral. A more formal ver-
ification was provided using symmetry arguments, which
impose a selection rule in the context of the Zitterbewe-
gung effect [56]. In addition, we find that the transitions
Zξ → F+, between a flat band and the fast cone are
absent, reducing the number of transitions with the flat
band, compared to the α− T3 model.
The total conductivity has intraband and interband

contributions, σ(ω) = σintra(ω) + σinter(ω). The intra-
band conductivity, as in pristine graphene [61, 75–77], is
given by

σintra(ω) = gsσ0
π

2

[
δ(ℏω) + i

1

πℏω

]
|εF |, (28)

where each cone contributed independently and the flat
band did not, since it has uniformly zero group velocity.

We divide the interband contribution as

σinter(ω) = σinter
> (ω)Θ(ℏω−|εF |)+σinter

< (ω)Θ(|εF |−ℏω)
(29)

where σinter
> (ω) considers contributions above the Fermi

energy, that is the sum of all permitted interband transi-
tions, excluding S+ → F+ (or F− → S− when εF < 0),
therefore

σinter
> (ω) = [σinter

> (ω)]0,1+,0 + [σinter
> (ω)]1,0+,− + [σinter

> (ω)]0,1+,−
(30)
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FIG. 7. Top: Re{σinter
< (ω)} for several values of α at fixed

εF = 0.25 eV. The absorption window displays a red shift
and narrows as parameter α decreases, with its magnitude
increasing (see Eq. (32)). Bottom: Re{σinter

α (ω)} for varying
εF with fixed value of α = 0.45. A red shift and a narrowing
of the spectrum is observed as εF diminish, but now its mag-
nitude remains constant.

with each transition contribution given by,

[
σinter
> (ω)

]ξ,ξ′
η,η′ = gsσ0

π

2ℏ2v2F

Vξ,ξ′

η,η′

(η(∆α)ξ − η′(∆α)ξ
′)2

×
{
Θ(ℏω − ℏωξ,ξ′

η,η′)− i

π
ln

[
|ℏω + ℏωξ,ξ′

η,η′ |
|ℏω − ℏωξ,ξ′

η,η′ |

]}
. (31)

On the other hand, σinter
< (ω) considers contributions

below the Fermi energy, that is, the intervalley transi-
tions S+ → F+ and F− → S−, then

σinter
< (ω) = gs

σ0π

2ℏ2v2F

V1,0
+,+

(∆α − 1)2
{Θ(ℏω − ℏωi)Θ (ℏωf − ℏω)

+
i

π
ln

∣∣∣∣ℏω − ℏωf

ℏω + ℏωf
· ℏω + ℏωi

ℏω − ℏωi

∣∣∣∣} . (32)

The real and imaginary parts of the total optical con-
ductivity σ(ω), for εF = 0.25 eV, are shown in Fig. 6(a),
in Fig. 6(b) we compare the real part of the conduc-
tivity for α = 0 (graphene) and α = 0.4. Compared
with the usual optical response of graphene, these plots
show three distinctive features: an intervalley window
for transitions below the Fermi energy (see the inset in
Fig. 6(a)), a flat band to slow cone step at ℏω = εF
and the splitting of the step at ℏω = 2εF in two
steps, one at ℏω0,1

+,− = (∆α + 1)|εF |, and the other at

ℏω1,0
+,− = (∆α + 1)|εF |/∆α. Notably, the addition of

the hub atom results in increased maximum absorption
compared to that of other graphene-like systems, with
this distinct three-step structure in the optical conductiv-
ity [54, 55]. This effect, along with the modified energy
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dispersion, resembles the behavior of a 5/2-pseudospin
Dirac semimetal [78], suggesting that lattice modulation
may alter the system’s effective pseudospin.

When α → 0, the σinter
< (ω) contribution and the

flat-band term in Eq. (31) vanish, reducing the inter-
band conductivity to the well-known expression for pris-
tine graphene’s interband conductivity [76], σinter(ω) =
σinter
gr (ω), where

σinter
gr (ω) = gs

σ0π

16

{
Θ(ℏω − 2|εF |)−

i

π
ln

∣∣∣∣ℏω + 2|εF |
ℏω − 2|εF |

∣∣∣∣} .
(33)

We further analyze the interband contributions be-
low the Fermi energy σinter

< (ω) in Fig.7. The frequency
range of this conductivity is determined by ℏωfi =
ℏ(ωf − ωi) = (∆α − 1)2|εF |/∆α, and it is centered at
ℏω< = ℏ(ωi + ωf )/2 = (∆2

α − 1)|εF |/(2∆α), as shown in

the inset of Fig. 6(b). Notice that ω< = (ω0,1
+,−−ω1,0

+,−)/2,
i.e. ω< is related with the frequency difference of the
transitions S− → F+ and F− → S+. The energy ℏω<

is often referred to as the beat frequency [55] and is the
result of interference between the two closely spaced crit-
ical frequencies. For α → 0, the contribution σinter

< (ω)

vanishes, as the band ε++(k) and ε−+(k) nearly overlap,

resulting in ∇k[ε
+
+(k) − ε−+(k)] ≈ 0 and resulting in an

absorption peak in conductivity. This effect, known as
band nesting, has also been observed in transition metal
dichalcogenides [73, 74] and space-modulated 2D mate-
rials, such as twisted bilayer graphene [2, 79, 80].

V. CONCLUSIONS

In this work, we study the effects of atoms appear-
ing with Kekulé periodicity (

√
3 ×

√
3) on a honeycomb

lattice, coupling to one of the sublattices. This creates
a hybrid model combining features of the α − T3 model
and Kekulé-distorted graphene, which we call Kekulé-
modulated α− T3 model or Kek-α.

We calculated the band structure and corresponding
eigenfunctions, featuring a double-cone structure with
a degenerate flat band, closely resembling the Kek-Y
model. Furthermore, we studied the optical transitions
through the joint density of states (JDOS) and optical
conductivity. Notably, compared to the α − T3 model,
new terms in the conductivity emerge due to the open-
ing of intervalley channels, which are absent in both the
α− T3 model and Kekulé-distorted graphene, and mani-
fest as critical frequencies in the optical spectra. In con-
trast to the Kek-Y graphene model, the optical response
of our model demonstrates significant tunability through
the Kekulé parameter α. In the low-energy approxima-
tion, our analytical results align with those of pristine
graphene under appropriate limits. Finally, we describe
an absorption phenomenon characterized by a resonance
frequency linked to intervalley transport, which appears
at a beat frequency determined by the characteristic fre-
quencies of each valley. This behavior also occurs in the
Kek-Y model, indicating that this resonance frequency
may serve as a reliable signature for identifying Kekulé
periodicity in similar systems.
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V. Fal’ko, Ordered states of adatoms on graphene, Phys-
ical Review B 80, 233409 (2009).

[42] M. Farjam and H. Rafii-Tabar, Energy gap opening in
submonolayer lithium on graphene: Local density func-
tional and tight-binding calculations, Physical Review B
79, 045417 (2009).

[43] K. Sugawara, K. Kanetani, T. Sato, and T. Takahashi,
Fabrication of li-intercalated bilayer graphene, AIP Ad-
vances 1, 22103 (2011).

[44] K. Kanetani, K. Sugawara, T. Sato, R. Shimizu,
K. Iwaya, T. Hitosugi, and T. Takahashi, Ca intercalated
bilayer graphene as a thinnest limit of superconducting
C6 Ca, Proceedings of the National Academy of Sciences
109, 19610 (2012).

[45] C. Chamon, Solitons in carbon nanotubes, Physical Re-
view B 62, 2806 (2000).

[46] L. Classen, M. M. Scherer, and C. Honerkamp, Insta-
bilities on graphene’s honeycomb lattice with electron-
phonon interactions, Phys. Rev. B 90, 035122 (2014).

[47] C. Weeks and M. Franz, Interaction-driven instabilities of
a Dirac semimetal, Physical Review B 81, 85105 (2010).

[48] C.-Y. Hou, C. Chamon, and C. Mudry, Electron Fraction-
alization in Two-Dimensional Graphenelike Structures,
Physical Review Letters 98, 186809 (2007).

[49] C. A. Marianetti and H. G. Yevick, Failure Mechanisms
of Graphene under Tension, Physical Review Letters
105, 245502 (2010).

[50] S.-H. Lee, H.-J. Chung, J. Heo, H. Yang, J. Shin,
U.-I. Chung, and S. Seo, Band Gap Opening by
Two-Dimensional Manifestation of Peierls Instability in
Graphene, ACS Nano 5, 2964 (2011).

https://doi.org/10.1103/PhysRevResearch.4.023063
https://doi.org/10.1007/s00220-019-03645-8
https://doi.org/10.1007/s00220-019-03645-8
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevA.80.063603
https://doi.org/10.1103/PhysRevLett.112.026402
https://doi.org/10.1103/PhysRevLett.112.026402
https://doi.org/10.1103/PhysRevB.101.165305
https://doi.org/10.1063/1.5078627
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1142/S0217984918501580
https://doi.org/10.1142/S0217984918501580
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevB.92.245410
https://doi.org/10.1103/PhysRevB.92.245410
https://doi.org/10.1103/PhysRevB.105.155405
https://doi.org/10.1103/PhysRevB.105.155405
https://doi.org/10.1103/PhysRevB.107.195137
https://doi.org/10.1063/5.0178936
https://doi.org/10.1038/nature12187
https://doi.org/10.1103/PhysRevLett.98.186809
https://doi.org/10.1038/nphys2272
https://doi.org/10.1038/nphys890
https://doi.org/10.1038/nphys890
https://doi.org/10.1103/PhysRevLett.126.206804
https://doi.org/10.1038/nature10941
https://doi.org/10.1038/nphys3776
https://doi.org/10.1088/1367-2630/aaa7e5
https://doi.org/10.1039/D0NR03565C
https://doi.org/10.1126/sciadv.abm5180
https://doi.org/10.1016/j.ssc.2009.07.008
https://doi.org/10.1103/PhysRevB.80.233409
https://doi.org/10.1103/PhysRevB.80.233409
https://doi.org/10.1103/PhysRevB.79.045417
https://doi.org/10.1103/PhysRevB.79.045417
https://doi.org/10.1063/1.3582814
https://doi.org/10.1063/1.3582814
https://doi.org/10.1073/pnas.1208889109
https://doi.org/10.1073/pnas.1208889109
https://doi.org/10.1103/PhysRevB.62.2806
https://doi.org/10.1103/PhysRevB.62.2806
https://doi.org/10.1103/PhysRevB.90.035122
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevLett.98.186809
https://doi.org/10.1103/PhysRevLett.105.245502
https://doi.org/10.1103/PhysRevLett.105.245502
https://doi.org/10.1021/nn1035894


10

[51] G. Giovannetti, M. Capone, J. Van Den Brink, and
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[70] L. González-Árraga, F. Guinea, and P. San-Jose, Mod-
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